


M o s t  o f  t h e  e l e c t r i c a l  p o w e r  g e n e r at e d  i n 
Los Alamos County goes to the national laboratory, with the largest 
chunk, about 25 percent of the county’s power, going to the Lab’s 
proton accelerator. But its next-largest power-hungry behemoth after 
that, consuming about 20 percent of the county’s total production—
roughly equal to the power consumed by all of Los Alamos’s businesses 
and residences combined—is a collection of computers. These are 
supercomputers that, by virtue of their sophistication, are pushing up 
against serious power and performance limitations.

The Lab’s high-performance computing (HPC) facilities primarily 
comprise more than ten supercomputers, one quantum-annealing 
computer, and several other HPC systems frequently used as test beds 
for experimentation. Lab scientists use these machines to perform 
computationally intensive simulations of many complex phenomena, 
from submicroscopic material changes inside the high-radiation 
environment of a nuclear weapon to the sensitive atmospheric 
dynamics that govern the global climate; from the evolution of 
cancer to the evolution of the universe. For a given top-of-the-line 
supercomputer, the performance of such simulations is largely 
limited by two things, one of which is the allotted electrical power.

The other limitation comes from an accumulation of tiny 
hardware glitches, called faults, often caused by natural radiation. 
These faults can randomly alter computer information, causing a zero 
to become a one, for example. Some faults are harmless, changing 
values that an application isn’t using anyway. Others produce errors, 
manifesting as incorrect outputs or procedures. And occasionally one 
causes a crash, changing something so foundational that the operating 
system can no longer function without a full restart.

In the next ten years, computing advances will face
severe limitations. We can either try to overcome them or

drive headlong into them.
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PACKING IN MORE TRANSISTORS WILL
INCREASE A CHIP’S VULNERABILITY

ALONG WITH ITS PERFORMANCE

In personal computers, even those rare faults that get 
amplified to become crashes generally constitute little more than 
a nuisance nowadays. In supercomputers, however, a multitude 
of faults can develop in succession due to the sheer number 
of chips that can be affected. These constitute a serious drain 
on performance. Los Alamos is on the forefront of advanced 
supercomputing, pushing toward the exascale (1018 “flops,” 
or floating-point operations per second, for those in the know). 
That’s more than a hundred times faster than the world’s current 
leading supercomputer and many millions of times faster than 
a new top-of-the-line laptop—and vastly more vulnerable 
to both faults and power insufficiency than either one.

Los Alamos scientists are pursuing two novel and 
somewhat contradictory paths to get around these limitations. 
One of these, as might be expected, involves tighter control 
over every bit of information: 
aggressively ferreting out faults 
and correcting them as they occur. 
The other, perhaps paradoxically, 
involves looser control of information: 
tolerating some randomness or reduced 
precision to save power and capacity for higher-precision 
operations elsewhere. Both strategies are likely to contribute 
to overall higher performance within power constraints 
and may ultimately find their way to consumer-market 
devices like phones and laptops, improving battery life and 
maybe, just maybe, eliminating those interminable hourglass 
and pinwheel icons from all of our lives.

No more Moore
Moore’s Law famously asserts that the number of 

transistors per unit area that can be manufactured on a 
computer chip doubles every year or two—every year when 
the law was first postulated in the 1960s and every 18–24 
months now. Historically, this has meant a steady increase in 
processing power, memory, and other measures of computer 
performance and has contributed strongly to economic growth 
around the world.

There have been many incorrect predictions of the end 
of Moore’s Law, when the computing industry would no 
longer be able to count on its steady gains. At least one such 
prediction, however, seems very difficult to avoid, because 
with a higher transistor density comes a higher sensitivity to 
radiation-induced faults. A single stray neutron, streaking 

down from the upper atmosphere in the wake of a cosmic-ray 
collision with an air molecule, could pass through a computer 
chip and introduce a fault into not just one bit of information—
something called a single-event upset, or SEU—but perhaps 
as many as 16 bits within a closely packed area of memory. 
When 16 zeros and ones change all at once, it’s more likely that 
a calculation will be noticeably affected.
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SOME RESOURCE-INTENSIVE
OPERATIONS DO NOT REQUIRE PERFECT

DETERMINISTIC COMPUTATIONS

Such multiple faults also make it more difficult to 
successfully implement a remedy known as an error-correcting 
code (ECC). Typically, that code works by appending additional, 
redundant bits to a number, so that a value of zero, say, might 
become a zero followed by two additional zeros. If, somewhere 
down the line, the value is no longer 0 00, but perhaps 0 10 
or 1 00, then the ECC knows something is wrong. It can fix the 
problem by making the most likely assumption, that of a single 
bit flip—in this case, the 1 should be a 0.

But if 16 bits change at once, this becomes much more 
difficult to do. If every bit of information requires two 
redundant bits just to safeguard against the simplest kind of 
fault, an SEU, then computational resources would be much 
more seriously taxed by having to provide enough redundancy 
to fix severe multiple-event upsets. Short of building in an 
enormous amount of redundancy and taking an enormous hit 
in terms of power and performance, there would be no way 
of knowing what had been corrupted. Some of the corrupted 
bits might even reside in the error-correcting operation itself.

Heather Quinn and her colleagues in the Los Alamos 
Space Data Science and Systems group have spent years 
working to understand and combat radiation effects on 
computer chips. Until recently, it has been very specialized 
work because standard ECCs could do a satisfactory job for 
computers on the ground; but on aircraft and spacecraft—
that is, closer to the cosmic rays—and in other high-radiation 
environments, computer systems would be particularly 
vulnerable to serious, uncorrectable errors. Indeed, the Cibola 
Flight Experience satellite, which has been studying Earth’s 
ionosphere for more than ten years, 
successfully uses specialized Los Alamos 
hardware and software to recover from 
SEUs that occur on a daily basis.

“We’ve made a lot of progress 
locking down the SEU issue,” says Quinn. 
“But Moore’s Law is taking us to a place where SEU correction 
will not be enough. Packing in more transistors will increase 
a chip’s vulnerability alongside its performance.” She points 
out that while the danger is more pronounced in space-based 
systems, it will soon be a major problem on the ground for 
consumer electronics—ten years by most projections and even 
sooner for HPC. “But if we can come up with a solution for 
space,” she says, “where radiation is abundant and electrical 
power is at a premium, then we should be able to use that for 
HPC and other computing environments on the ground.”

Trying Trikaya
Specialized computing systems have some form of fault 

protection now. HPC systems have a similar safeguard to what 
most people probably use in their own personal computing: 
they save often. That is, at various checkpoints, they record 
a last-known state to be restored in the event of a serious fault 
event. Along with servers and high-end desktop computers, 
HPC systems also have a form of ECC protection known as 
a SECDED code (“single event correct, double event detect”). 
The redundant bits are checked as values are moved in and out 
of memory—at a significant cost to power, memory, and chip 

space. (Laptops, tablets, and phones generally forego these 
protections in favor of speed and battery life.) But as Moore’s 
Law approaches its limit and faults begin to arrive en masse, 
SECDED codes (as well as more cumbersome double-event-
correcting codes) will become less effective. That’s why Quinn 
and collaborators have been working on a broader approach.

When a computer program is written, or coded, it is 
written in a programming language that expresses logical 
instructions: arithmetic operations, calls to subroutines, 
if-thens, do-whiles, and the like. The program is then 
“compiled” by another program (called a compiler) to convert 
the human-comprehensible code into machine instructions. 
Quinn’s approach is essentially to force the compiler to build 
programs such that they operate in triplicate, using a technique 
that she validated for a sweeping new ECC called Trikaya. 
(The name refers to a Buddhist doctrine recognizing Buddha’s 
three “kayas,” or bodies.)

A simpler version of this approach might cover a compu-
tation, such as adding two numbers. If this is done three times, 
and the results are 4, 4, and 79, then an ECC could assume that 
a fault occurred in the third calculation because it lost a “best 
two out of three” contest. Essentially it was outvoted: two votes 
for “4” and only one vote for “79” strongly suggests that a fault 
disrupted the final calculation. (Alternatively, an identical 
fault event could have affected the first two calculations in 
exactly the same way, but this is an extremely unlikely scenario.) 
Trikaya extends this three-vote concept to full, simple 
programs, with more advanced capabilities planned. In effect, 
everything the software does, it does three times, and then it 

takes a vote to establish the results. Or, to save power and other 
computational resources (e.g., access to hardware also needed 
for other tasks), it might do everything twice and only conduct 
a third vote if the first two disagree.

Theoretical work at Los Alamos over the past several 
years has verified Trikaya’s algorithms, and operational testing 
is currently underway at the Los Alamos Neutron Science 
Center—the same proton accelerator and neutron source 
that typically consumes a quarter of Los Alamos County’s 
electrical power. It can spray neutrons on a chip and cause 
faults at a much higher rate than would happen naturally, 
even in space. That way, researchers can test how reliably 
Trikaya actually fixes errors caused by radiation. If successful, 
Trikaya protection will likely appear on the next generation 
of satellites tasked with detecting nuclear detonations from 
space. And if it proves successful there, it may influence 
future microprocessor designs and ultimately filter down to 
the personal-computer market.

Still, Trikaya, like earlier fault-protection strategies, 
is resource intensive. It depends on repeating computations 
and therefore saps power and performance. It may protect 
satellites, and maybe personal computers, but by itself, 
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SOMETIMES GUESS-AND-CHECK
IS FASTER THAN DOING THINGS

THE USUAL WAY

it doesn’t solve the HPC resource problem. For that, Quinn 
collaborates with Los Alamos colleague and HPC expert 
Laura Monroe.

Inexact computing
“Not every problem requires an exact answer,” says 

Monroe. “Sometimes it’s good enough—or even better—
to use inexact computing methods to get a high-probability, 
close-enough answer faster and with less power than an 
exact answer.”

Wait, what? Isn’t the whole point of computers that they 
are reliable and calculate correct answers lightning fast?

Well, yes, that was the point. But as the Moore’s Law 
crisis approaches, and with HPC systems 
already resource-strained, the situation 
has changed. In addition, certain resource-
intensive operations, such as image 
processing, social networking, searching, 
and sorting, genuinely do not require 
perfect, deterministic computations. And other emerging 
areas of advanced computing that require fast-but-not-perfect 
calculations, such as machine learning and perception, are 
likely to operate as well or better with inexact algorithms. 
Even some traditional computations, including, ironically, 
error correction, appear to be amenable to inexact methods. 
It is now an important research challenge to understand which 
problems might benefit from the speed and cost savings of 
an inexact approach.

“Research into inexact computing started in the early 
days of computing as an approach to unreliable systems,” 
says Monroe. “But that need abated with the move away from 
vacuum tubes to more reliable transistors and integrated 
circuits in the 1950s. Now it’s becoming important again.”

Inexact computing consists of two similar-sounding but 
distinct approaches: probabilistic computing and approximate 
computing. Probabilistic computing, like a large number 
of coin flips to converge on 50-50 odds, is non-deterministic, 
meaning that the computational paths are different each time 
a computation is performed, and the results may well be 
different too. Approximate computing is deterministic and 
straightforward, but it is abbreviated, such as by reducing 
the numerical precision (e.g., number of decimal places) 
or shaving off iterations in a looping calculation.

Another way to characterize these approaches involves 
the difference between accuracy and precision. Accuracy is the 
correctness of a calculation (or measurement), or how close it 
is to the actual answer. Precision is how close each calculation 
(or measurement) is to other calculations of the same problem. 
So, accuracy or precision—for inexact computing purposes, 
it is possible to relax either one.

For non-resource-limited computers today, both accuracy 
and precision are widely understood to be at acceptable levels, 
with both limited only by the finite number of bits used in a 
digital-computer calculation. Most calculations are brute-force 
applications of cumbersome but straightforward arithmetic 
carried out with many more decimal places than are needed. 
And because of the deterministic nature of the hardware and 
software used, if a calculation is repeated, exactly the same 
answer will emerge.

As a conceptual example, consider the irrational number 
pi, which requires an infinite number of decimal places to 
express it exactly. To calculate it, a computer could carry out a 
formula to add up an infinite but converging series of decreasing 
terms. (See “Two Slices of Pi” on the next page.) After adding 
up a huge number of terms, pi is guaranteed to be correct up 
to some number of decimal places. One could then choose to 
trade accuracy for reduced resource consumption (power, time, 
hardware requirements) by choosing to sum only the first few 
terms. The precision would be perfect (to however many terms 
one chooses to add), in the sense that repeated calculations 

would always yield precisely the same answer, but the answer 
would be off from the true value of pi, so the accuracy would 
be relaxed. This is an example of approximate computing.

Alternatively, one could choose an accurate method with 
precision relaxed—namely, the exact geometric definition of pi, 
the ratio of a circle’s circumference to its diameter—but use an 
imprecise, probabilistic computation to get there. The computer 
could generate random numbers to represent pixels and 
basically draw a circle from which to obtain pi; the more pixels, 
the more closely the estimate will approach pi. One could design 
this process with enough pixels that the result is x percent likely 
to be within y percent of the correct value. The answer would 
be different each time the calculation is performed, but a large 
number of trials would converge toward the exact answer. 

Unlike in conversational use, accuracy and precision mean different things in technical 
use. Accuracy refers to the ability to produce a correct or optimal result. Precision 
refers to limiting the amount of variation in a result. (Precision can also refer to the 
number of significant digits or decimal places in a calculated or measured value, since 
a measurement of 3.28 could mean 3.277 or 3.28412, and these represent variation 
in the result.) In inexact computing, fault vulnerability and power consumption may 
be reduced by deliberately restricting either the accuracy of a computation (by using 
an approximation) or its precision (by restricting the number of significant digits 
or using probabilistic methods).

Neither accurate nor precise

Accurate but not precise Accurate and precise

Precise but not accurate
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SOMETIMES GUESS-AND-CHECK
IS FASTER THAN DOING THINGS

THE USUAL WAY

This is an example of probabilistic computing (not one used in 
practice to calculate pi). For some tasks, including many HPC 
simulations, such probabilistic and approximate algorithms may 
be sufficiently accurate and precise, and yet considerably less 
resource-intensive than a standard deterministic computation.

Turn up the radio
Some probabilistic computing requires specialized 

hardware. Prototypes from academia, industry, and 
government already exist, delivering impressive improvements 

in speed and power use. Image processing, in particular, 
has proven to be fertile ground for the potential benefits of 
probabilistic computing.

Why image processing? “There are really two reasons,” 
explains Monroe. “Most obviously, images don’t always 
need to be perfect; sometimes minor variations will make 
no difference in how the image is used, even in scientific 
contexts. In addition, existing image-processing algorithms 
can be very resource-intensive, so there’s a lot of opportunity 
for savings.”

Two Slices
of Pi

Which is the better way to compute the value of pi—an irrational 
number that can only be expressed exactly with an in�nite number 
of decimal places—a deterministic or probabilistic calculation?

Each version below will be based on a ¼ slice of pi, or π/4.

DETERMINISTIC APPROACH
Because there’s no direct way to calculate pi as it is de�ned—the 
circumference of a circle divided by its diameter—computers must 
calculate pi by some other method. As an instructive example, 
consider that the tangent of π/4 radians (equivalent to 45°) is 1:
tan(π/4) = 1.

By taking the arctangent (inverse of the tangent) and multiplying 
by 4 on both sides of that equation, one gets: π = 4 × arctan(1).

The arctangent (and many other functions) can be expressed as 
a power series—an exact formula based on the sum of an in�nite 
number of terms. For the arctangent, this is:

PROBABILISTIC APPROACH
Alternatively, one could develop an exact geometric method and use 
random numbers to make the irrational-number computation tractable. 
For example:

The area of a circle is πr 2.

The area of a square just barely containing that circle is the length 
of its side, squared; here the side length is just the circle’s diameter, 
or twice its radius, 2r. Therefore the ratio of the area of the circle 
to that of the square is:

Area ratio (circle’s area/square’s area) = πr 2 / (2r)2 = πr 2 / 4r 2 = π/4.
Equivalently, π = 4 × (circle’s area/square’s area).

After just one term, we have π = 4. After two terms, it’s π = 4 × (1 – 1/3) = 
2.666666667. After 3 terms, it’s π  = 4 × (1 – 1/3 + 1/5) = 3.466666667, 
and so on. Because the terms get smaller and alternate signs (plus, 
minus, plus, minus), each additional term helps to zero in on the 
correct value (3.14159…). A computer program could meet reduced 
power and computational resource requirements by adding only 
the �rst few terms (the �rst ten? hundred? thousand?) and ignoring 
the in�nite number of terms that follow. 

The result would have good precision, in the sense that repeated 
calculations adding the same number of terms give the exact same 
result, but it might not be accurate enough—that is, not close 
enough to the correct value of pi for a given task. In fact, the 
arctangent power series nicely illustrates this limitation because 
it converges very slowly; an enormous number of terms would have 
to be added to arrive at a reasonably accurate approximation of pi. 
Fortunately, other power series, with terms that also alternate signs 
but diminish much more rapidly, can be used for calculating pi. 

A computer capable of generating random numbers could place dots 
at random pixel locations within the square. After some number of 
pixels is placed, it could divide the number inside the circle by the total 
number inside the square (including those inside the circle). Pi should 
then equal four times that amount. Just as �ipping a coin many times 
causes a 50–50 probability to emerge, more dots should lead to a more 
accurate result. 

That result would have limited precision because repeated calculations, 
with di�erent random numbers each time, would yield di�erent results. 
But with enough dots, such variations would be small, and there would 
be a high degree of probability of a highly accurate result (close to 
3.14159…). In some applications, calculating with random numbers like 
this can be better (less power, more speed, better fault tolerance, etc.) 
than an equivalent deterministic calculation.

so the formula for π, with x set to 1, becomes 

x1
1 3 5 7

x3 x5 x7
arctan(x) …

3 5 7
1

π ( )4 × 1 …
1 1
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For example, when doing image processing for radio 
astronomy, one wants to keep the extraterrestrial radio sources 
and remove the radio noise. This is typically done with an 
iterative algorithm called CLEAN. You start by identifying the 
x brightest pixels. Then you apply a mathematical operation 
called a Fast Fourier Transform (FFT) to develop a “point 
spread function” for those pixels. That’s just what it sounds 
like: a way to take a perfect point source (of radio waves in 
this case, such as a quasar) and calculate how that point will 
spread into neighboring pixels in the instrument recording the 
image. Then the resulting blurred bright spots are subtracted 
from the original image and the whole process is repeated 
many times. When done, all that remains in the image should 
be noise. Then, finally, the saved bright spots are combined 
with a noise-subtracted background that hopefully, but not 
for certain, displays a good image of real astronomical radio 
sources. Whew.

Radio telescopes are usually located in remote locations 
far from sources of interference, where power is at a premium. 
Good computational performance is therefore essential, and 
a graphics processing unit (GPU) is a reasonable choice because 
it is designed for parallel processing—subdividing compu-
tations into pieces that can be carried out simultaneously—
provided that parallel algorithms exist to take advantage of 
this capability. At the time Monroe started to look into inexact 
methods for image processing, there was a good parallel 
algorithm for FFT on a GPU, but selecting the x brightest pixels 
was a bottleneck.

Monroe and collaborators (including Joanne Wendelberger, 
whose work is also featured on page 5, and Sarah Michalak) 
developed an alternative, probabilistic approach for the 
pixel-selection problem on a GPU. They used a randomized 
process to select “pivots”: values for pixel brightness with 
a user-chosen probability of bounding the x brightest pixels 
and were used to sort pixels into bins. By repeating this 

randomized sorting procedure to do the bright-pixel selection, 
they were able to improve the corresponding processing times 
by a factor of 1.5–6 and remove the bottleneck for the CLEAN 
algorithm. This also increased capacity to handle images four 
times larger than previous methods.

“It’s basically a Las Vegas algorithm—even though it is 
probabilistic, it always gives the correct answer,” says Monroe. 
“Sometimes, for the right problems, guess-and-check can be 
faster in practice than doing things deterministically.”

So far, all these advances—probabilistic chips, 
probabilistic algorithms, and advanced error correction like 
Trikaya—are being created for special-purpose computations, 
not for the general computing market. General consumer 
computing will likely follow as new chips become increasingly 
susceptible to radiation-induced faults. But one inexact-
computing improvement may be relatively easy to come by 
right now.

Many programmers today carry out deterministic 
math with higher decimal-place precision than necessary. 
“Floating point” decimal numbers used in software coding 
carry either single precision, which is encoded in 32 bits, or 
double precision, which is encoded in 64 bits. Yet so many bits 
(and corresponding decimal places) may not always be needed. 
For example, Monroe is working with Lab colleagues to develop 
codes that can be improved in terms of the tradeoff between 
quality and resource use simply by going from double to single 
or even half precision in some parts of the code. For HPC, 
that would mean saving precious power or doing more 
without consuming any additional power. It would also mean 
saving memory and storage space. And it would mean faster 
performance, or at least offsetting the performance reduction 
caused by the advanced ECCs that will soon be necessary.

It’s a little thing, limiting numerical precision, but every 
little bit helps when you’re under constant assault by radiation 
from space. 

—Craig Tyler

Certain resource-intensive image-processing tasks, such as “cleaning” a radio-astronomy 
image as seen here, can be sped up with an inexact-computing algorithm. In this case, 
a probabilistic approach to a bottleneck in the calculation yields a noise-reduced image 
more quickly and efficiently than a deterministic approach. 
CREDIT: Bill Junor/LANL

More high-performance computing at Los Alamos
• Facilities and capabilities

http://www.lanl.gov/org/padste/adtsc/hpc/index.php
http://www.lanl.gov/projects/advanced-simulation-computing/index.php

• Quantum computing
http://www.lanl.gov/discover/publications/1663/2016-july/not-magic-quantum.php

• Exascale computing for materials science
http://www.lanl.gov/discover/publications/1663/issues-archive/june2012.pdf

• History of supercomputers at Los Alamos
http://www.lanl.gov/discover/publications/alumni/2015-01/science-100supercomputers.php

• Select supercomputer applications
Climate science: http://www.lanl.gov/discover/publications/1663/2016-december/ice-sheet-demise.php
Cancer genetics: http://www.lanl.gov/discover/publications/1663/2016-december/what-causes-cancer.php
Petascale cosmology: http://www.lanl.gov/discover/publications/1663/issues-archive/october2012.pdf
Ocean ecology: http://www.lanl.gov/discover/publications/1663/2013-july/the-bottom-of-the- 
ocean-food-chain.php
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